Answer:
See Explanation
Step-by-step explanation:
The question is incomplete, as the dataset is missing; However, one can deduce that the question implies that you calculate the mean absolute deviation of the missing dataset.
Take for instance, the dataset is: 1, 2, 2, 3, 3, 5, 8
Calculate the mean:
[tex]\bar x = \frac{\sum x}{n}[/tex]
[tex]\bar x = \frac{1+2+2+3+3+5+8}{7}[/tex]
[tex]\bar x = \frac{24}{7}[/tex]
[tex]\bar x = 3.43[/tex]
Next, proceed to the instruction in the question;
Which is:
[tex]M = \frac{1}{n}\sum\limits^{n}_{i=1}|x_i - \bar x|[/tex]
So, we have:
[tex]M = \frac{1}{7}(|1-3.43| + |2 - 3.43| + |2 - 3.43| + |3 - 3.43| + |3 - 3.43| + |5 - 3.43| + |8 - 3.43|)[/tex]
[tex]M = \frac{1}{7}(|-2.43| + |- 1.43| + |-1.43| + |- 0.43| + |-0.43| + |1.57| + |4.57|)[/tex]
Remove absolute brackets
[tex]M = \frac{1}{7}(2.43 + 1.43 + 1.43 + 0.43 + 0.43 + 1.57 + 4.57)[/tex]
[tex]M = \frac{1}{7}*12.29[/tex]
[tex]M = 1.76[/tex]