Answer:
d = 4.425 x 10⁻⁶ m = 4.425 μm
Explanation:
The charge on plates can be given as:
[tex]q = \sigma A=CV\\where,\\\\C = Capacitance\ of\ parallel\ plate\ capacitor = \frac{\epsilon_oA}{d}\\\\therefore,\\\\\sigma A=(\frac{\epsilon_oA}{d})V\\\\d = (\frac{\epsilon_o}{\sigma})V[/tex]
where,
d = spacing between plates = ?
ε₀ = Permitivity of free space = 8.85 x 10⁻¹² C²/Nm²
σ = surface charge density = (30 nC/cm²)(10⁻⁹ C/1 nC)(1 cm²/10⁻⁴ m²)
σ = 3 x 10⁻⁴ C/m²
V = Potential Difference = 150 V
Therefore,
[tex]d = \frac{(8.85\ x\ 10^{-12}\ C^2/Nm^2)}{3\ x\ 10^{-4}\ C/m^2}(150\ V)\\[/tex]
d = 4.425 x 10⁻⁶ m = 4.425 μm