For the right triangles below, find the exact values of the side lengths a and c. If necessary, write your responses in simplified radical form.

Answer:
First triangle: [tex]a = 5\sqrt{2}[/tex], second triangle: [tex]c = \frac{8\sqrt{3}}{3}[/tex]
Step-by-step explanation:
In the first triangle, the value of [tex]a[/tex] is equal to the following trigonometric relation:
[tex]a = \frac{5}{\cos 45^{\circ}}[/tex]
[tex]a = \frac{5}{\frac{\sqrt{2}}{2} }[/tex]
[tex]a = \frac{10}{\sqrt{2}}[/tex]
[tex]a = \frac{10\sqrt{2}}{2}[/tex]
[tex]a = 5\sqrt{2}[/tex]
In the second triangle, we obtain the value of [tex]c[/tex] is equal to the following trigonometric relation:
[tex]c = 8\cdot \tan 30^{\circ}[/tex]
[tex]c = 8 \cdot \left(\frac{\sin 30^{\circ}}{\cos 30^{\circ}} \right)[/tex]
[tex]c = 8\cdot \left(\frac{\frac{1}{2} }{\frac{\sqrt{3}}{2} } \right)[/tex]
[tex]c = \frac{8}{\sqrt{3}}[/tex]
[tex]c = \frac{8\sqrt{3}}{3}[/tex]