Respuesta :
Answer:
13 units
Step-by-step explanation:
(8, -4) and (3,8)
To find the distance of two points, we use the distance formula:
[tex]d = \sqrt{(x_{2}-x_1)^2 + (y_2-y_1)^2 }[/tex]
Let's plug in what we know.
[tex]d = \sqrt{(3 -8)^2 + (8 - (-4))^2 }[/tex]
Evaluate the double negative.
[tex]d = \sqrt{(3 -8)^2 + (8 + 4)^2 }[/tex]
Evaluate the parentheses.
[tex]d = \sqrt{(-5)^2 + (12)^2 }[/tex]
Evaluate the exponents.
[tex]d = \sqrt{(25) + (144) }[/tex]
Add.
[tex]d = \sqrt{(169)}[/tex]
Evaluate the square root.
[tex]d = 13[/tex]
13 units
Hope this helps!
Answer:
12
Step-by-step explanation:
a⋅(a+b)= c⋅(c + d) formula
9⋅(9+x)= 3⋅(3+60)
81+9x=3(63)
81+9x=189
-81 -81
9x=108
x=12