Find the distance between the two points rounding to the nearest tenth (if necessary).
(8,
-4) and (3,8)

Find the distance between the two points rounding to the nearest tenth (if necessary).
(8,
-4) and (3,8)

Respuesta :

hbj

Answer:

13 units

Step-by-step explanation:

(8, -4) and (3,8)

To find the distance of two points, we use the distance formula:

[tex]d = \sqrt{(x_{2}-x_1)^2 + (y_2-y_1)^2 }[/tex]

Let's plug in what we know.

[tex]d = \sqrt{(3 -8)^2 + (8 - (-4))^2 }[/tex]

Evaluate the double negative.

[tex]d = \sqrt{(3 -8)^2 + (8 + 4)^2 }[/tex]

Evaluate the parentheses.

[tex]d = \sqrt{(-5)^2 + (12)^2 }[/tex]

Evaluate the exponents.

[tex]d = \sqrt{(25) + (144) }[/tex]

Add.

[tex]d = \sqrt{(169)}[/tex]

Evaluate the square root.

[tex]d = 13[/tex]

13 units

Hope this helps!

Answer:

12

Step-by-step explanation:

a⋅(a+b)=  c⋅(c + d)                formula

9⋅(9+x)=  3⋅(3+60)

81+9x=3(63)

81+9x=189

-81       -81

9x=108

x=12

ACCESS MORE