Answer:
The equation of the parabola is [tex]y = -12\cdot x^{2}[/tex].
Step-by-step explanation:
Since the directrix is of the form [tex]y = a[/tex], the parabola is vertical. The vertex of the parabola ([tex]V(x,y)[/tex]) is the midpoint between the focus ([tex]F(x,y)[/tex]) and a point of the directrix ([tex]P(x,y)[/tex]), that is to say:
[tex]V(x,y) = \frac{1}{2}\cdot F(x,y) + \frac{1}{2}\cdot P(x,y)[/tex] (1)
If we know that [tex]F(x,y) = (0, -3)[/tex] and [tex]P(x,y) = (0, 3)[/tex], then the coordinates of the vertex of the parabola:
[tex]V(x,y) = \frac{1}{2}\cdot (0, -3) + \frac{1}{2}\cdot (0, 3)[/tex]
[tex]V(x,y) = (0, 0)[/tex]
The vertex factor ([tex]p[/tex]) is the distance of the focus with respect to the vertex:
[tex]p = \sqrt{[F(x,y)-V(x,y)]\,\bullet \,[F(x,y)-V(x,y)]}[/tex] (2)
If we know that [tex]F(x,y) = (0, -3)[/tex] and [tex]V(x,y) = (0, 0)[/tex], then the vertex factor is:
[tex]p = \sqrt{0^{2}+(-3)^{2}}[/tex]
[tex]p = -3[/tex]
The equation of the parabola in the vertex form is described below:
[tex]y - k = 4\cdot p \cdot (x-h)^{2}[/tex] (3)
Where:
[tex]x[/tex] - Independent variable.
[tex]y[/tex] - Dependent variable.
[tex]h, k[/tex] - Coordinates of the vertex.
If we know that [tex](h,k) = (0, 0)[/tex] and [tex]p = -3[/tex], then the equation of the parabola is [tex]y = -12\cdot x^{2}[/tex].