Respuesta :

Given:

The geometric sequence is:

[tex]\dfrac{7}{9},\dfrac{-7}{3},7,-21,63,...[/tex]

To find:

The 9th term of the given geometric sequence.

Solution:

We have,

[tex]\dfrac{7}{9},\dfrac{-7}{3},7,-21,63,...[/tex]

Here, the first term is:

[tex]a=\dfrac{7}{9}[/tex]

The common ratio is:

[tex]r=\dfrac{a_2}{a_1}[/tex]

[tex]r=\dfrac{\dfrac{-7}{3}}{\dfrac{7}{9}}[/tex]

[tex]r=\dfrac{-7}{3}\times \dfrac{9}{7}[/tex]

[tex]r=-3[/tex]

The nth term of a geometric sequence is:

[tex]a_n=ar^{n-1}[/tex]

Where, a is the first term and r is the common ratio.

Substitute [tex]a=\dfrac{7}{9},r=-3,n=9[/tex] to find the 9th term.

[tex]a_9=\dfrac{7}{9}(-3)^{9-1}[/tex]

[tex]a_9=\dfrac{7}{9}(-3)^{8}[/tex]

[tex]a_9=\dfrac{7}{9}(6561)[/tex]

[tex]a_9=5103[/tex]

Therefore, the 9th term of the given geometric sequence is 5103.

ACCESS MORE