Given:
The geometric sequence is:
[tex]\dfrac{7}{9},\dfrac{-7}{3},7,-21,63,...[/tex]
To find:
The 9th term of the given geometric sequence.
Solution:
We have,
[tex]\dfrac{7}{9},\dfrac{-7}{3},7,-21,63,...[/tex]
Here, the first term is:
[tex]a=\dfrac{7}{9}[/tex]
The common ratio is:
[tex]r=\dfrac{a_2}{a_1}[/tex]
[tex]r=\dfrac{\dfrac{-7}{3}}{\dfrac{7}{9}}[/tex]
[tex]r=\dfrac{-7}{3}\times \dfrac{9}{7}[/tex]
[tex]r=-3[/tex]
The nth term of a geometric sequence is:
[tex]a_n=ar^{n-1}[/tex]
Where, a is the first term and r is the common ratio.
Substitute [tex]a=\dfrac{7}{9},r=-3,n=9[/tex] to find the 9th term.
[tex]a_9=\dfrac{7}{9}(-3)^{9-1}[/tex]
[tex]a_9=\dfrac{7}{9}(-3)^{8}[/tex]
[tex]a_9=\dfrac{7}{9}(6561)[/tex]
[tex]a_9=5103[/tex]
Therefore, the 9th term of the given geometric sequence is 5103.