Respuesta :

Answer:

[tex]x = 8\±\sqrt{10[/tex]

[tex]a =8[/tex]    [tex]b = 10[/tex]

Step-by-step explanation:

Given

[tex]x^2 - 16x + 54 = 0[/tex]

Required

Complete the square

[tex]x^2 - 16x + 54 = 0[/tex]

Subtract 54 from both sides

[tex]x^2 - 16x + 54 -54= 0-54[/tex]

[tex]x^2 - 16x = -54[/tex]

--------------------------------------------------

Take half of - 16

[tex](-16/2) = -8[/tex]

Square the result

[tex](-8)^2 = 64[/tex]

Add the squared result to both sides of the equation

--------------------------------------------------

So, we have:

[tex]x^2 - 16x +64= -54+64[/tex]

[tex]x^2 - 16x +64= 10[/tex]

Expand

[tex]x^2 - 8x - 8x + 64 = 10[/tex]

Factorize

[tex]x(x - 8) - 8(x - 8) = 10[/tex]

Factor out x - 8

[tex](x - 8)(x - 8) = 10[/tex]

[tex](x - 8)^2 = 10[/tex]

Take square roots

[tex]x - 8 = \±\sqrt{10[/tex]

Solve for x

[tex]x = 8\±\sqrt{10[/tex]

We have:

[tex]x = a - \sqrt{b}[/tex]

[tex]x = a + \sqrt{b}[/tex]

By comparing the above with: [tex]x = 8\±\sqrt{10[/tex]

Answer:

Step-by-step explanation:

Ver imagen 23klinzing800
ACCESS MORE