Respuesta :

Answer:

[tex](a)\ 9 * 27[/tex]

[tex](b)\ 81 * 3[/tex]

[tex](d)\ 3*3*3*3*3[/tex]

Step-by-step explanation:

Given

[tex]3^5[/tex]

Required

Select equivalent expressions

[tex](a)\ 9 * 27[/tex]

Express as exponents

[tex]9 * 27 = 3^2 * 3^3[/tex]

Apply law of indices

[tex]9 * 27 = 3^{2+3[/tex]

[tex]9 * 27 = 3^{5[/tex]

[tex](b)\ 81 * 3[/tex]

Express as exponents

[tex]81 * 3 = 3^4 * 3[/tex]

Apply law of indices

[tex]81 * 3 = 3^{4+1[/tex]

[tex]81 * 3 = 3^5[/tex]

[tex](c)\ 3*5[/tex]

Solve

[tex]3*5 = 15[/tex]

[tex](d)\ 3*3*3*3*3[/tex]

From calculator, we have

[tex]3*3*3*3*3=243[/tex]

Express as exponents

[tex]3*3*3*3*3=3^5[/tex]

[tex](e) 9 * 9[/tex]

Express as exponents

[tex]9 * 9= 3^2 * 3^2[/tex]

Apply law of indices

[tex]9 * 9= 3^{2+2[/tex]

[tex]9 * 9= 3^4[/tex]

Hence, a, b and d are true

ACCESS MORE