Answer:
[tex](a)\ 9 * 27[/tex]
[tex](b)\ 81 * 3[/tex]
[tex](d)\ 3*3*3*3*3[/tex]
Step-by-step explanation:
Given
[tex]3^5[/tex]
Required
Select equivalent expressions
[tex](a)\ 9 * 27[/tex]
Express as exponents
[tex]9 * 27 = 3^2 * 3^3[/tex]
Apply law of indices
[tex]9 * 27 = 3^{2+3[/tex]
[tex]9 * 27 = 3^{5[/tex]
[tex](b)\ 81 * 3[/tex]
Express as exponents
[tex]81 * 3 = 3^4 * 3[/tex]
Apply law of indices
[tex]81 * 3 = 3^{4+1[/tex]
[tex]81 * 3 = 3^5[/tex]
[tex](c)\ 3*5[/tex]
Solve
[tex]3*5 = 15[/tex]
[tex](d)\ 3*3*3*3*3[/tex]
From calculator, we have
[tex]3*3*3*3*3=243[/tex]
Express as exponents
[tex]3*3*3*3*3=3^5[/tex]
[tex](e) 9 * 9[/tex]
Express as exponents
[tex]9 * 9= 3^2 * 3^2[/tex]
Apply law of indices
[tex]9 * 9= 3^{2+2[/tex]
[tex]9 * 9= 3^4[/tex]
Hence, a, b and d are true