Respuesta :

Answer:

[tex]\frac{180}{147}[/tex]

Step-by-step explanation:

  • Simplify [tex](\frac{3}{-7} - \frac{11}{21} )[/tex]

[tex]=> \frac{(-3 \times 3) - 11}{21}[/tex]

[tex]=> \frac{-9 - 11}{21}[/tex]

[tex]=> \frac{-20}{21}[/tex]

  • Find the additive inverse of  [tex]\frac{-20}{21}[/tex] by using its property - "Sum of a number & its additive inverse is always zero". Assume that 'x' is an additive inverse of  [tex]\frac{-20}{21}[/tex].

[tex]=> x + \frac{-20}{21} = 0[/tex]

[tex]=> x = 0 - (-\frac{20}{21}) = \frac{20}{21}[/tex]

  • Simplify [tex](\frac{9}{5} \div \frac{7}{5} )[/tex]

[tex]=> \frac{9}{5} \times \frac{1}{\frac{7}{5} }[/tex]

[tex]=> \frac{9}{5} \times \frac{5}{7}[/tex]

[tex]=> \frac{9}{7}[/tex]

  • Now, find the product of [tex]\frac{9}{7}[/tex] & [tex]\frac{20}{21}[/tex]

[tex]=> \frac{9}{7} \times \frac{20}{21}[/tex]

[tex]=> \frac{180}{147}[/tex]

ACCESS MORE