Please do no 7 for me. I’m practising for my exam and can’t find the solution. The correct answer will get 15 points. No spam

Step-by-step explanation:
Prove that
[tex] \frac{ \tan(x) }{ \sec(x) - 1 } + \frac{ \sin(x) }{1 + \cos(x) } = 2 \csc(x) [/tex]
Recall that ta x = sin x/ cos x and sec x = 1/cos x. So the 1st term on the LHS becomes
[tex] \frac{ \frac{ \sin(x) }{ \cos(x) } }{ \frac{1}{ \cos(x) } - 1 } + \frac{ \sin(x) }{1 + \cos(x) } = 2 \csc(x) [/tex]
or with the cos x cancelling out, the equation becomes
[tex] \frac{ \sin(x) }{1 - \cos(x) } + \frac{ \sin(x) }{1 + \cos(x) } = 2 \csc(x) [/tex]
Combining the terms on the LHS,
[tex] \frac{2 \sin(x) }{(1 - \cos(x))(1 + \cos(x) ) } = 2 \csc(x) [/tex]
[tex] \frac{2 \sin(x) }{1 - {( \cos(x) )}^{2} } = \frac{2 \sin(x) }{ { (\sin(x)) }^{2} } \\ or \\ \frac{2}{ \sin(x) } = 2 \csc(x) [/tex]