Given:
The function is:
[tex]f(x)=\sqrt{7x-21}[/tex]
To find:
The steps of finding the inverse function [tex]f^{-1}(x)[/tex].
Solution:
We have,
[tex]f(x)=\sqrt{7x-21}[/tex]
The steps of finding the inverse function are:
Step 1: Substitute [tex]f(x)=y[/tex].
[tex]y=\sqrt{7x-21}[/tex]
Step 2: Interchange x and y.
[tex]x=\sqrt{7y-21}[/tex]
Step 3: Taking square on both sides, we get
[tex]x^2=7y-21[/tex]
Step 4: Adding 21 on both sides, we get
[tex]x^2+21=7y[/tex]
Step 5: Divide both sides by 7.
[tex]\dfrac{1}{7}x^2+3=y[/tex]
Step 6: Substitute [tex]y=f^{-1}(x)[/tex].
[tex]\dfrac{1}{7}x^2+3=f^{-1}(x)[/tex], where [tex]x\geq 0[/tex].
Therefore, the inverse of the given function is [tex]f^{-1}(x)=\dfrac{1}{7}x^2+3[/tex] and the arrangement of steps is shown above.