Explanation:
Answer:
Explanation:
When resistors are connected in parallel combination, then equivalent resistance is given by,
[tex] \to \quad \bf{ \dfrac{1}{R_1} + \dfrac{1}{R_2} =\dfrac{1}{R_p}}[/tex]
Inserting values,
[tex] \to \quad \bf { \dfrac{1}{R_1} + \dfrac{1}{R_2} =\dfrac{1}{R_p} } \\ \\ \to \quad \bf { \dfrac{1}{35} + \dfrac{1}{R_2} =\dfrac{1}{14.5} } \\ \\ \to \quad \bf { \dfrac{R_2 + 35}{(R_2)(35)} =\dfrac{1}{14.5} } \\ \\ \to \quad \bf { \dfrac{R_2 + 35}{35R_2} =\dfrac{1}{14.5} } \\ \\ \to \quad \bf { 14.5(R_2+35) = 35R_2(1)} \\ \\ \to \quad \bf { 14.5 R_2+ 507.5= 35R_2} \\ \\ \to \quad \bf { 507.5= 35R_2 - 14.5R_2} \\ \\ \to \quad \bf { 507.5= 20.5 R_2} \\ \\ \to \quad \bf { \dfrac{507.5}{20.5} =R_2} \\ \\ \to \quad\underline{\boxed{ \bf { 24.75 \; \Omega= R_2}}} \\ [/tex]