Respuesta :
Log rule: [tex]\log_a(b)=x\leftrightarrow a^x=b[/tex]
By that rule, [tex]\log_4(x+4)=1\leftrightarrow 4^1=x+4[/tex]
We know that [tex]4^1=4[/tex] so we now have [tex]4=x+4[/tex]
Subtract 4 from both sides and you get x=0.
By that rule, [tex]\log_4(x+4)=1\leftrightarrow 4^1=x+4[/tex]
We know that [tex]4^1=4[/tex] so we now have [tex]4=x+4[/tex]
Subtract 4 from both sides and you get x=0.
remember
[tex]log_ab=c[/tex] means [tex]a^c=b[/tex]
so
[tex]log_4(x+4)=1 [/tex] means [tex]4^1=x+4[/tex]
4=x+4
minus 4 both sides
x=0
a fun tip is
if you get [tex]log_a(b)=1 [/tex], then a=b
[tex]log_ab=c[/tex] means [tex]a^c=b[/tex]
so
[tex]log_4(x+4)=1 [/tex] means [tex]4^1=x+4[/tex]
4=x+4
minus 4 both sides
x=0
a fun tip is
if you get [tex]log_a(b)=1 [/tex], then a=b