Respuesta :

Answer:

(4[tex]\sqrt{3}[/tex])/3

Step-by-step explanation:

From the diagram,

Applying

sinθ = Opposite/Hypotenuse................. Equation 1

From the diagram,

Given: θ = 60°, Opposite = 2, Hypotenuse = X

Substitute these values into equation 1

sin60°  = 2/X

make X the subject of the equation

X = 2/sin60°.................. Equation 2

But,

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex]

Therefore,

X = 2/( [tex]\frac{\sqrt{3} }{2}[/tex])

X = (2×2)/[tex]\sqrt{3}[/tex]

X = 4/[tex]\sqrt{3}[/tex]

Rationalising the denominator,

X = (4/[tex]\sqrt{3}[/tex])×([tex]\sqrt{3}[/tex]/[tex]\sqrt{3}[/tex])

X = (4[tex]\sqrt{3}[/tex])/3