Respuesta :

cairde

Answer:

(a) (x+9)²+(y-5)²=56

(b) 7.4833

Step-by-step explanation:

The standard form for the equation of a circle is (x-h)²+(y-k)²=r².

Expanded a bit, this is x²-2hx+h²+y²-2ky+k²=r².

Rearrange this to resemble our equation: x²+y²+(-2h)x+(-2k)y=(r²-h²-k²)

Looking at our equation, x²+y²+18x-10y=-50, we can say-2h=18, -2k=-10, and r²-h²-k²=-50.

-2h=18

h=-9

-2k=-10

k=5

r²-h²-k²=-50

r²-(-9)²-(5²)=-50

r²-81-25=-50

r²=106-50

r²=56

So since we know h, k, and r², we can say x²+y²+18x-10y=-50 =

(x+9)²+(y-5)²=56

(b)

For an equation in standard from, r is the radius.

In part a, we found r²=56.

r=[tex]\sqrt{56}[/tex]=7.4833