Respuesta :

Step-by-step explanation:

[tex] {x}^{2} - 2x = - 2 \\ {x}^{2} - 2x + 2 = 0 \\ x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} \\ x = \frac{ - ( - 2)± \sqrt{ {( - 2)}^{2} - (4 \times 1 \times 2)} }{2 \times 1} \\ x = \frac{2± \sqrt{ - 4} }{2} \\ x = \frac{2±2i}{2} \\ x = \frac{2 + 2i}{2} \: or \: \frac{2 - 2i}{2} \\ x = 1 + i \: \: or \: \: 1 - i \\ x = 1±i[/tex]