Respuesta :
Answer:
The thrust of the engine calculated using the cold air is 34227.35 N
Explanation:
For the turbofan engine, firstly the overall mass flow rate is considered. The mass flow rate is given as
[tex]\dot{m}=\rho AV_a[/tex]
Here
- ρ is the density which is given as [tex]\dfrac{P}{RT}[/tex]
- P is the pressure of air at 5500 m from the ISA whose value is 50506.80 Pa
- R is the gas constant whose value is 286.9 J/kg.K
- T is the temperature of the inlet which is given as 253 K
- A is the cross-sectional area of the inlet which is given by using the diameter of 2.0 m
- V_a is the velocity of the aircraft which is given as 250 m/s
So the equation becomes
[tex]\dot{m}=\rho AV_a\\\dot{m}=\dfrac{P}{RT} AV_a\\\dot{m}=\dfrac{50506.80}{286.9\times 253} \times (\dfrac{\pi}{4}\times 2^2)\times 250\\\dot{m}=546.4981\ kgs^{-1}[/tex]
Now in order to find the flow from the fan, the Bypass ratio is used.
[tex]\dot{m}_f=\dfrac{BPR}{BPR+1}\times \dot{m}[/tex]
Here BPR is given as 8 so the equation becomes
[tex]\dot{m}_f=\dfrac{BPR}{BPR+1}\times \dot{m}\\\dot{m}_f=\dfrac{8}{8+1}\times 546.50\\\dot{m}_f=485.77\ kgs^{-1}[/tex]
Now the exit velocity is calculated using the total energy balance which is given as below:
[tex]h_4+\dfrac{1}{2}V_a^2=h_5+\dfrac{1}{2}V_e^2[/tex]
Here
- h_4 and h_5 are the enthalpies at point 4 and 5 which could be rewritten as [tex]c_pT_4[/tex] and [tex]c_pT_5[/tex] respectively.
- The value of T_4 is the inlet temperature which is 253 K
- The value of T_5 is the outlet temperature which is 233K
- The value of c_p is constant which is 1005 J/kgK
- V_a is the inlet velocity which is 250 m/s
- V_e is the outlet velocity that is to be calculated.
So the equation becomes
[tex]h_4+\dfrac{1}{2}V_a^2=h_5+\dfrac{1}{2}V_e^2\\c_pT_4+\dfrac{1}{2}V_a^2=c_pT_5+\dfrac{1}{2}V_e^2[/tex]
Rearranging the equation gives
[tex]\dfrac{1}{2}V_e^2=c_pT_4-c_pT_5+\dfrac{1}{2}V_a^2\\\dfrac{1}{2}V_e^2=c_p(T_4-T_5)+\dfrac{1}{2}V_a^2\\V_e^2=2c_p(T_4-T_5)+V_a^2\\V_e=\sqrt{2c_p(T_4-T_5)+V_a^2}\\V_e=\sqrt{2\times 1005\times (253-233)+(250)^2}\\V_e=320.46 m/s[/tex]
Now using the cold air approach, the thrust is given as follows
[tex]T=\dot{m}_f(V_e-V_a)\\T=485.77\times (320.46-250)\\T=34227.35\ N[/tex]
So the thrust of the engine calculated using the cold air is 34227.35 N