Respuesta :

Answer:

  • D. A = x² + 44x = 808

Step-by-step explanation:

Check if the relationship is linear. Verify the difference between areas.

We can see the difference is not common.

It means we can exclude options B and C.

The remaining options are quadratic (A and D).

Try the last column with option A:

  • 4813 = 45² + 1908
  • 4813 = 3933
  • False

Verify the last option:

  • 4813 = 45² + 44*45 + 808
  • 4813 = 4813
  • Correct

We can check and confirm the other columns are correct as well.

msm555

Answer:

Solution given:

for 1st

A=x²+1908

when x=25

A=25²+1908=2533 satisfied for 1st

when x=30

A=30²+1908=28008[not satisfied]

result : not satisfied

for 2,nd

A=495x+2038

when

x=25

A=495×25+2038=14413[not satisfied]

result : not satisfied

.for 3rd.

A=99x+58

when

x=25

A=99×25+58=2533[satisfied]

when x=30

A=99×30+58=3028[satisfied]

when x=35

A=99×35+58=3523[not satisfied}

result; ,not satisfied

for 4th

A=x²+44x+808

when

x=25

A=25²+44×25+808=2533{satisfied}

when x=30

A=30²+44×30+808=3028[satisfied]

when x=35

A=35²+44×35+808=3573[satisfied]

when

x=40

A=40²+44×40+808=4168{satisfied}

when x=45.

A=45²+44×45+808=4813{satisfied}

result :satisfied

so..correct option is D.A=+44x+808