Respuesta :
Answer:
b = -34
Step-by-step explanation:
Use " ^ " to indicate exponentiation:
( 4x - 2 ) ( x + 9 ) - 3x = ax^2 + bx + c
Perform the indicated multiplication:
4x^2 + 36x - 2x - 18 - 3x becomes
4x^2 - 34x - 18 so b = -34
Answer:
b=31 in [tex]ax^2+bx+c[/tex]
Step-by-step explanation:
Hi there!
[tex]( 4x - 2 ) ( x + 9 ) - 3x[/tex]
Our goal is to expand this equation and put it in the form [tex]ax^2+bx+c[/tex]. Firstly, multiply the first two binomials (in the parentheses):
[tex]= 4x(x+9)-2(x+9)-3x\\= 4x^2+36x-2(x+9)-3x\\= 4x^2+36x-2x-18-3x[/tex]
Now, we can combine like terms (terms with like variables):
[tex]= 4x^2+36x-2x-3x-18\\= 4x^2+31x-18[/tex]
Now, in this equation, we can easily identify that 31 is the value of b in [tex]ax^2+bx+c[/tex].
I hope this helps!