Solution :
Mass is varied keeping frequency constant.
Wavelength, λ [tex]$=\frac{2l}{n}$[/tex]
where length of spring = l
number of segments = n
Velocity, v = λ x f
= [tex]$\sqrt{\frac{T}{\mu}}$[/tex]
[tex]$\mu $[/tex] = mass density, T = tension in string
[tex]$T=\frac{4 \mu l^2f^2}{n^2}$[/tex]
[tex]$T=mg = \frac{4 \mu l^2f^2}{n^2}$[/tex] , n = 2
[tex]$T = (m-2.2)g = \frac{4 \mu l^2f^2}{n^2}, n = 5$[/tex]
[tex]$\Rightarrow \frac{m}{m-2.2}=\frac{25}{4}$[/tex]
[tex]$\Rightarrow m = 2.619\ kg$[/tex]
Therefore, μ = 0.002785 kg/ m
Frequency is varied keeping T constant
[tex]$T=\frac{4 \mu l^2f^2}{n^2}, f=60 , \ \ n = 2$[/tex]
[tex]$T=\frac{4 \mu l^2f^2}{n^2}, f=? , \ \ n = 7$[/tex]
[tex]$\Rightarrow \frac{60^2}{4}=\frac{f^2}{49}$[/tex]
f = 210 Hz