When a particular hanging mass is suspended from the string, a standing wave with two segments is formed. When the weight is reduced by 2.2 kg, a standing wave with five segments is formed. What is the linear density of the string

Respuesta :

Solution :

Mass is varied keeping frequency constant.

Wavelength, λ  [tex]$=\frac{2l}{n}$[/tex]

where length of spring = l

           number of segments = n

Velocity, v = λ x f

                 = [tex]$\sqrt{\frac{T}{\mu}}$[/tex]

[tex]$\mu $[/tex] =  mass density, T = tension in string

[tex]$T=\frac{4 \mu l^2f^2}{n^2}$[/tex]

[tex]$T=mg = \frac{4 \mu l^2f^2}{n^2}$[/tex]  , n = 2

[tex]$T = (m-2.2)g = \frac{4 \mu l^2f^2}{n^2}, n = 5$[/tex]

[tex]$\Rightarrow \frac{m}{m-2.2}=\frac{25}{4}$[/tex]

[tex]$\Rightarrow m = 2.619\ kg$[/tex]

Therefore, μ = 0.002785 kg/ m

Frequency is varied keeping T constant

[tex]$T=\frac{4 \mu l^2f^2}{n^2}, f=60 , \ \ n = 2$[/tex]

[tex]$T=\frac{4 \mu l^2f^2}{n^2}, f=? , \ \ n = 7$[/tex]

[tex]$\Rightarrow \frac{60^2}{4}=\frac{f^2}{49}$[/tex]

f = 210 Hz