Assume that both populations are normally distributed. ​(a) Test whether at the level of significance for the given sample data. ​(b) Construct a ​% confidence interval about . Population 1 Population 2 n s ​(a) Test whether at the level of significance for the given sample data. Determine the null and alternative hypothesis for this test.

Respuesta :

fichoh

Complete question :

Assume that both populations are normally distributed. ​a) Test whether mu 1 not equals mu 2 at the alpha equals 0.05 level of significance for the given sample data. ​b) Construct a 95​% confidence interval about mu 1 minus mu 2. Sample 1 Sample 2 n 19 19 x overbar 16.2 14.1 s 4.5 3.1

Answer:

(-0.445 ; 4.645)

Null:

H0: mu1 - mu2 = 0

H1 : mu1 - mu2 ≠ 0

Step-by-step explanation:

__________Sample 1 ____ Sample 2

n ___________19 _________19

x overbar ____16.2 ________14.1

s __________ 4.5 _________3.1

The confidence interval : (2 independent means)

(x1 - x2) ± Tcritical * √(s1²/n1) + (s2²/n2)

T(1 - α/2), 36 = 2.03

(16.2 - 14.1) ± 2.03 * √(4.5²/19) + (3.1²/19)

2.1 ± 2.545

Lower boundary = (2.1 - 2.545) = - 0.445

Upper boundary = (2.1 + 2.545) = 4.645

(-0.445 ; 4.645)