Respuesta :

Nayefx

Answer:

[tex] \displaystyle GH = 2 \sqrt{30} [/tex]

[tex] \displaystyle FH = 2 \sqrt{10} [/tex]

[tex] \displaystyle m \angle G = {30}^{ \circ} [/tex]

Step-by-step explanation:

QUESTION-2:

we are given a right angle triangle

it's a 30-60-90 triangle of which FH is the shortest side

remember that,in case of 30-60-90 triangle the the longest side is twice as much as the shortest side thus

our equation is

[tex] \displaystyle 2FH=4\sqrt{10}[/tex]

divide both sides by 2

[tex] \displaystyle\frac{2FH}{2}= \frac{ 4 \sqrt{10} }{2}[/tex]

[tex] \displaystyle FH =2 \sqrt{10}[/tex]

Question-1:

in order to figure out GH we can use Trigonometry because the given triangle is a right angle triangle

as we want to figure out GH we'll use sin function

remember that,

[tex] \displaystyle \sin( \theta) = \frac{opp}{hypo} [/tex]

let our opp, hypo and [tex]\theta[/tex] be GH, 4√10 and 60° respectively

thus substitute:

[tex] \displaystyle \sin( {60}^{ \circ} ) = \frac{GH}{4 \sqrt{10} } [/tex]

recall unit circle:

[tex] \displaystyle \frac{ \sqrt{3} }{2} = \frac{GH}{4 \sqrt{10} } [/tex]

cross multiplication:

[tex] \displaystyle 2 GH = 4 \sqrt{10} \times \sqrt{3} [/tex]

simplify multiplication:

[tex] \displaystyle 2 GH = 4 \sqrt{30} [/tex]

divide both sides by 2:

[tex] \displaystyle GH = 2 \sqrt{30} [/tex]

QUESTION-3:

Recall that, the sum of the interior angles of a triangle is 180°

therefore,

[tex] \displaystyle m \angle G + {60}^{ \circ} + {90}^{ \circ} = {180}^{ \circ} [/tex]

simplify addition:

[tex] \displaystyle m \angle G + {150}^{ \circ} = {180}^{ \circ} [/tex]

cancel 150° from both sides

[tex] \displaystyle m \angle G = {30}^{ \circ} [/tex]