Respuesta :
Answer:
[tex] \displaystyle GH = 2 \sqrt{30} [/tex]
[tex] \displaystyle FH = 2 \sqrt{10} [/tex]
[tex] \displaystyle m \angle G = {30}^{ \circ} [/tex]
Step-by-step explanation:
QUESTION-2:
we are given a right angle triangle
it's a 30-60-90 triangle of which FH is the shortest side
remember that,in case of 30-60-90 triangle the the longest side is twice as much as the shortest side thus
our equation is
[tex] \displaystyle 2FH=4\sqrt{10}[/tex]
divide both sides by 2
[tex] \displaystyle\frac{2FH}{2}= \frac{ 4 \sqrt{10} }{2}[/tex]
[tex] \displaystyle FH =2 \sqrt{10}[/tex]
Question-1:
in order to figure out GH we can use Trigonometry because the given triangle is a right angle triangle
as we want to figure out GH we'll use sin function
remember that,
[tex] \displaystyle \sin( \theta) = \frac{opp}{hypo} [/tex]
let our opp, hypo and [tex]\theta[/tex] be GH, 4√10 and 60° respectively
thus substitute:
[tex] \displaystyle \sin( {60}^{ \circ} ) = \frac{GH}{4 \sqrt{10} } [/tex]
recall unit circle:
[tex] \displaystyle \frac{ \sqrt{3} }{2} = \frac{GH}{4 \sqrt{10} } [/tex]
cross multiplication:
[tex] \displaystyle 2 GH = 4 \sqrt{10} \times \sqrt{3} [/tex]
simplify multiplication:
[tex] \displaystyle 2 GH = 4 \sqrt{30} [/tex]
divide both sides by 2:
[tex] \displaystyle GH = 2 \sqrt{30} [/tex]
QUESTION-3:
Recall that, the sum of the interior angles of a triangle is 180°
therefore,
[tex] \displaystyle m \angle G + {60}^{ \circ} + {90}^{ \circ} = {180}^{ \circ} [/tex]
simplify addition:
[tex] \displaystyle m \angle G + {150}^{ \circ} = {180}^{ \circ} [/tex]
cancel 150° from both sides
[tex] \displaystyle m \angle G = {30}^{ \circ} [/tex]