Answer:
[tex]\frac{1}{2}[/tex] or 0.5 or 50%
Step-by-step explanation:
P(not even) = P(odd) = P(1) or P(3) or P(5) = P(1) + P(3) + P(5)
= [tex]\frac{1}{6}[/tex]+ [tex]\frac{1}{6}[/tex]+[tex]\frac{1}{6}[/tex] = [tex]\frac{3}{6}[/tex]= [tex]\frac{1}{2}[/tex]
Alternatively
P(not even) = 1 -P(even) = 1 - [P(2) or P(4) or P(6)]
= 1 - [ [tex]\frac{1}{6}[/tex]+ [tex]\frac{1}{6}[/tex]+[tex]\frac{1}{6}[/tex]] = 1 - [tex]\frac{3}{6}[/tex] = [tex]\frac{1}{2}[/tex]