9514 1404 393
Answer:
Step-by-step explanation:
Using the least common denominator, we have ...
[tex]2-\dfrac{x+1}{x-2}-\dfrac{x-4}{x+2}\\\\=\dfrac{2(x-2)(x+2)-(x+1)(x+2)-(x-4)(x-2)}{(x-2)(x+2)}\\\\=\dfrac{2(x^2-4)-(x^2+3x+2)-(x^2-6x+8)}{x^2-4}\\\\=\dfrac{(2-1-1)x^2+(-3+6)x+(-8-2-8)}{x^2-4}=\boxed{\dfrac{3x-18}{x^2-4}}[/tex]
The values of a and b are ...
a = 3
b = -18