Answer:
[tex] \huge \purple{ \boxed{ y = \frac{2}{3} }}[/tex]
Step-by-step explanation:
Since, the variables x and y are inversely proportional.
[tex] \therefore \: y \: \: \alpha \: \: \frac{1}{x} \\ \implies \: y = \frac{k}{x} \\ (k = constant) \\ \implies \: xy = k ...(1)\\ plug \: y = 2, \: \: x = 3 \: in \: equation \: (1) \\ we \: find \\ 2 \times 3 = k \\ k = 6 \\ plug \:k = 6 \: in \: equation \: (1) \\ xy = 6 \\ (this \: is \: the \: equation \: of \: variation) \\ when \: x = 9 \: \: y =? \\ \\ 9y = 6 \\ y = \frac{6}{9} \\ \huge \red{ \boxed{ y = \frac{2}{3} }}[/tex]