Answer:
See solution below
Step-by-step explanation:
Given the expression
[tex]\frac{cos(x+30)-sin(x+60)}{sin(x)cos(x)} \\[/tex]
Recall that
cos x = sin(90-x)
cos(x+30 ) = sin (90-(x+30)
= sin(90-x-30)
= sin(60-x)
Substitute
[tex]\frac{sin(60-x)-sin(x+60)}{sin(x)cos(x)} \\= \frac{sin60cosx-cos60sinx)-sinxcos60-cosxsin60)}{sin(x)cos(x)} \\= \frac{-2cos60sinx)}{sin(x)cos(x)} \\= \frac{-2(1/2)sinx)}{sin(x)cos(x)} \\= \frac{-1}{cos(x)}\\= \frac{1}{cos(x)}\\ \\= -sec(x) Proved[/tex]