Answer:
[tex]\frac{x}{9}[/tex]
Step-by-step explanation:
Given
[tex]\frac{x^2 - 9}{9x + 27} \div \frac{x - 3}{x}[/tex]
Required
Solve
[tex]\frac{x^2 - 9}{9x + 27} \div \frac{x - 3}{x}[/tex]
Change the division to multiplication
[tex]\frac{x^2 - 9}{9x + 27} * \frac{x}{x - 3}[/tex]
Apply difference of 2 squares
[tex]\frac{(x - 3)(x+3)}{9x + 27} * \frac{x}{x - 3}[/tex]
Cancel out x - 3
[tex]\frac{x+3}{9x + 27} * \frac{x}{1}[/tex]
Factorize 9x + 27
[tex]\frac{x+3}{9(x + 3)} * \frac{x}{1}[/tex]
Cancel out x + 3
[tex]\frac{1}{9} * \frac{x}{1}[/tex]
Finally, this gives:
[tex]\frac{x}{9}[/tex]