Respuesta :

Answer:

Factorise both sides of

ax+bx=a2−b2  

and get

(a+b)x=(a+b)(a−b).  

If  

a+b≠0,  

because division by 0 is not allowed, then divide by a + b and get

(a+b)xa+b=(a+b)(a−b)a+b.  

It reduces to

x=a−b.  

If a+b=0, then  

ax+bx=a2−b2 is  

(a+b)x=(a+b)(a−b)  

and this simplifies to

0x=0(a−b),  

that is,

0=0,  

so that the value of x is indeterminate.