Respuesta :

Answer:

Step-by-step explanation:

11). [tex]p^{\frac{3}{5}}\times \sqrt[10]{p^4}[/tex]

    = [tex]p^{\frac{3\times 2}{5\times 2}}\times \sqrt[10]{p^4}[/tex]

    = [tex]p^{\frac{6}{10}}\times \sqrt[10]{p^4}[/tex]

    = [tex]\sqrt[10]{p^{6}}\times\sqrt[10]{p^4}[/tex]

    = [tex]\sqrt[10]{p^{10}}[/tex]

    = p

    Yes

12). [tex]p^{\frac{3}{5}}\times \sqrt[10]{p^4}=\sqrt[5]{p^3} \times \sqrt[10]{p^4}[/tex]

     But, [tex]\sqrt[5]{p^3} \times \sqrt[10]{p^4}\neq \sqrt[3]{p^5}\times \sqrt[10]{p^4}[/tex]

     No

13). Since, [tex]p^{\frac{3}{5}}\times \sqrt[10]{p^4}=p[/tex]

   Simplify the given expression,

   [tex]\sqrt[10]{p^{\frac{23}{5}}}[/tex]

    [tex]\sqrt[10]{p^{\frac{23}{5}}} =p^{\frac{23}{50}}[/tex]

    No.

14). [tex]p^{\frac{12}{50}}=p^{\frac{6}{25}}\neq p[/tex]

    No.

15). [tex]p^{24}\neq p[/tex]

    No.