Respuesta :

Answer:

Option A

Step-by-step explanation:

It's given that cosθ = [tex]-\frac{2\sqrt{5} }{5}[/tex]

Since, cosθ = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex] = [tex]-\frac{2\sqrt{5} }{5}[/tex]

                                        = [tex]\frac{2}{\sqrt{5}}[/tex]

By applying Pythagoras theorem in the right triangle,

(Hypotenuse)² = (Opposite side)² + (Adjacent side)²

(√5)² = (Opposite side)² + (2)²

5 = (Opposite side)² + 4  

Opposite side = √(5 - 4)

                       = 1

Since, sinθ = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

                  = [tex]\frac{1}{\sqrt{5}}[/tex]

Since, sine is positive in IInd quadrant,

sinθ = [tex]\frac{1}{\sqrt{5}}[/tex]

Therefore, option A will be the answer.

Ver imagen eudora