Answer:
Following are the responses to the given question.
Step-by-step explanation:
In this question, the points values are missing which is why its solution can be defined as follows:
Let
[tex]l= (7,-1) \\\\m=(-2, 4)\\\\n =(6,5)\\\\[/tex]
Formula:
[tex]d=\sqrt{((x_2-x_1)^2+(y_2-y_1)^2)}[/tex]
For d1:
[tex]x_1=7, y_1=-1, x_2=-2, y_2=4\\\\[/tex]
[tex]d=\sqrt{((-2-7)^2+(4+1)^2)}[/tex]
[tex]=\sqrt{((-2-7)^2+(4+1)^2)}\\\\=\sqrt{((-9)^2+(5)^2)}\\\\=\sqrt{(81+25)}\\\\=\sqrt{(106)}\\\\=10.29[/tex]
For d2:
[tex]x_1=7, y_1=-1, x_2=6, y_2=5\\\\[/tex]
[tex]d=\sqrt{((6-7)^2+(5+1)^2)}[/tex]
[tex]=\sqrt{((-1)^2+(6)^2)}\\\\=\sqrt{(1+36)}\\\\=\sqrt{(37)}\\\\=6.08[/tex]
The first distance value is greater than the second distance value.