Solution :
[tex]$p = \frac{28}{30}$[/tex]
= 0.93
Given :
[tex]$a=0.05$[/tex]
[tex]$z(0.025)=$[/tex] [tex]$1.96$[/tex] (from standard normal table)
So the lower bound is
[tex]$=p+z\times \sqrt{p \times \frac{1-p}{n}}$[/tex]
[tex]$=0.7+0.93\times \sqrt{0.7 \times \frac{1-0.7}{30}}$[/tex]
= 1.63 + 0.083
[tex]$=1.73$[/tex]