A rocket takes off from a height of 30 feet with an initial velocity of 150 ft /sec. The equation that models the path that the rocket takes is: G(x) = -16x^2+150x+30

Respuesta :

Answer:

The rocket will hit the floor at 9.57 seconds

Step-by-step explanation:

Given

[tex]G(x) = -16x^2 + 150x + 30[/tex]

Take off height = 30ft

Initial velocity= 150ft/s

Required [Missing from the question]

Time to hit the ground

The rocket will hit the ground at:

[tex]G(x) = 0[/tex]

So, we have:

[tex]0 = -16x^2 + 150x + 30[/tex]

Rewrite as:

[tex]16x^2 - 150x - 30=0[/tex]

Solve using quadratic formula, we have:

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where:

[tex]a= 16\\ b = -150\\ c = -30[/tex]

So, we have:

[tex]x = \frac{-(-150) \± \sqrt{(-150)^2 - 4*16*(-30)}}{2*16}[/tex]

[tex]x = \frac{150 \± \sqrt{22500 +1920}}{32}[/tex]

[tex]x = \frac{150 \± \sqrt{24420}}{32}[/tex]

[tex]x = \frac{150 \± 156.27}{32}[/tex]

Split:

[tex]x = \frac{150 + 156.27}{32}\ or\ \frac{150 - 156.27}{32}[/tex]

[tex]x = \frac{306.27}{32}\ or\ \frac{-6.27}{32}[/tex]

Time cannot be negative;

So:

[tex]x = \frac{306.27}{32}[/tex]

[tex]x = 9.57[/tex]

Hence, the rocket will hit the floor at 9.57 seconds