Answer:
The rocket will hit the floor at 9.57 seconds
Step-by-step explanation:
Given
[tex]G(x) = -16x^2 + 150x + 30[/tex]
Take off height = 30ft
Initial velocity= 150ft/s
Required [Missing from the question]
Time to hit the ground
The rocket will hit the ground at:
[tex]G(x) = 0[/tex]
So, we have:
[tex]0 = -16x^2 + 150x + 30[/tex]
Rewrite as:
[tex]16x^2 - 150x - 30=0[/tex]
Solve using quadratic formula, we have:
[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where:
[tex]a= 16\\ b = -150\\ c = -30[/tex]
So, we have:
[tex]x = \frac{-(-150) \± \sqrt{(-150)^2 - 4*16*(-30)}}{2*16}[/tex]
[tex]x = \frac{150 \± \sqrt{22500 +1920}}{32}[/tex]
[tex]x = \frac{150 \± \sqrt{24420}}{32}[/tex]
[tex]x = \frac{150 \± 156.27}{32}[/tex]
Split:
[tex]x = \frac{150 + 156.27}{32}\ or\ \frac{150 - 156.27}{32}[/tex]
[tex]x = \frac{306.27}{32}\ or\ \frac{-6.27}{32}[/tex]
Time cannot be negative;
So:
[tex]x = \frac{306.27}{32}[/tex]
[tex]x = 9.57[/tex]
Hence, the rocket will hit the floor at 9.57 seconds