Answer:
(a)
[tex]\begin{array}{ccc}{} & {W} & {w} & {w} & {Ww } & {ww } & {w} & { Ww} & {ww } \ \end{array}[/tex]
(b)
[tex]White = 50\%[/tex]
[tex]Yellow = 50\%[/tex]
Step-by-step explanation:
See attachment for initial punnet square
Solving (a): Complete the square
Initially, we have:
[tex]\begin{array}{ccc}{} & {W} & {w} & {w} & { } & { } & {w} & { } & { } \ \end{array}[/tex]
To complete the square, we simply write the letter at the column and the letter at the row in each cell;
So, we have:
[tex]\begin{array}{ccc}{} & {W} & {w} & {w} & {Ww } & {ww } & {w} & { Ww} & {ww } \ \end{array}[/tex]
Solving (b): Percentage of each
From the question, we understand that W are dominant to w.
So:
[tex]Ww = White[/tex]
[tex]ww = Yellow[/tex]
From (a) above
[tex]Ww = 2[/tex]
[tex]ww = 2[/tex]
[tex]Total = 4[/tex]
So, the percentage of each is:
[tex]White = \frac{Ww}{Total} * 100\%[/tex]
[tex]White = \frac{2}{4} * 100\%[/tex]
[tex]White = 0.5 * 100\%[/tex]
[tex]White = 50\%[/tex]
[tex]Yellow = 100\% - White[/tex] --- Complement rule
[tex]Yellow = 100\% - 50\%[/tex]
[tex]Yellow = 50\%[/tex]