Given:
The logarithmic equation is:
[tex]\log x+\log (x-3)=1[/tex]
To find:
The value of x.
Solution:
Properties of logarithm used:
[tex]\log a+\log b=\log (ab)[/tex]
[tex]\log 10=1[/tex]
[tex]\log x[/tex] is defined for [tex]x>0[/tex].
We have,
[tex]\log x+\log (x-3)=1[/tex]
Using properties of logarithm, we get
[tex]\log [x(x-3)]=\log 10[/tex]
[tex]x^2-3x=10[/tex]
Splitting the middle term, we get
[tex]x^2-5x+2x-10=0[/tex]
[tex]x(x-5)+2(x-5)=0[/tex]
[tex](x-5)(x+2)=0[/tex]
[tex]x=5,-2[/tex]
In the given equation, we have a term [tex]\log x[/tex]. It means the value of x must be greater than 0 or positive. So, the only possible value of x is:
[tex]x=5[/tex]
Therefore, the value of x is 5.