Answer:
[tex]q = 7[/tex]
Step-by-step explanation:
Given
[tex]p\ \alpha\ \frac{1}{q}[/tex] --- inverse variation
[tex]p =2; q = 21[/tex]
Required
Find q when [tex]p = 6[/tex]
[tex]p\ \alpha\ \frac{1}{q}[/tex]
This becomes
[tex]p = \frac{k}{q}[/tex]
Where k is the constant of variation.
Make k the subject
[tex]k = p * q[/tex]
Substitute [tex]p =2; q = 21[/tex]
[tex]k = 2 * 21[/tex]
[tex]k =42[/tex]
When [tex]p = 6[/tex], we have:
[tex]p = \frac{k}{q}[/tex]
[tex]6 = \frac{42}{q}\\[/tex]
Make q the subject
[tex]q = \frac{42}{6}[/tex]
[tex]q = 7[/tex]