Respuesta :
Answer:
The first step is to find the volume of the two hemispheres.
Step-by-step explanation:
[tex]\boxed{volume \: of \: sphere = \frac{4}{3} \pi {r}^{3} }[/tex]
Since the 2 hemispheres have the same radius, we can simply find the volume of a sphere.
Volume of sphere
[tex] = \frac{4}{3}( \pi)( {12}^{3} )[/tex]
[tex] = 2304\pi \: in^{3} [/tex]
Volume of solid
= volume of cylinder -volume of 2 hemispheres
Let's find the volume of the cylinder.
[tex]\boxed{voume \: of \: cylinder = \pi {r}^{2}h }[/tex]
Volume of cylinder
[tex] = \pi( {12}^{2} )(24)[/tex]
[tex] = 3456\pi \: in^{3} [/tex]
Thus, volume of solid
[tex] = 3456\pi - 2304\pi[/tex]
[tex] = 1152\pi[/tex]
[tex] = 1152(3.14)[/tex]
[tex] = 3617.28 \: in^{3} [/tex]
Answer:
Solution :-
Volume of solid = Volume of Sphere - Volume of cylinder
Volume = 4/3πr³ - πr²h
Volume = 4/3 • π • 12³ - π • 12² • 24
Volume = 4/3 • π • 1728 - π • 144 • 24
Volume = 4 • π • 576 - π • 3456
Volume = π(3456 - 2304)
Volume = π(1152)
Volume = 3619.11 in³
[tex] \\ [/tex]