Answer:
"2.82" seems to be the correct solution.
Step-by-step explanation:
As we know,
A bag (Bag A) contains,
Red balls = 3
Blue ball = 1
A second bag (Bag B) contains,
Red balls = 1
Blue ball = 1
Now,
⇒ P(Bag A, red ball) = [tex]P(A)\times P(r)\times P(r)[/tex]
On substituting the values, we get
⇒ = [tex]\frac{1}{2}\times \frac{3}{4}\times \frac{2}{3}[/tex]
⇒ = [tex]\frac{1}{4}[/tex]
Similarly,
Probability of second bag will be:
⇒ P(Bag B) = [tex]\frac{1}{2}[/tex]
hence,
In the first bag (Bag A), the expected number of red balls will be:
⇒ [tex]E(n)=\Sigma P(n)\times n[/tex]
On substituting the values, we get
⇒ [tex]=3 (\frac{1}{4})+2(\frac{1}{8} )+4(\frac{1}{24} )+3(\frac{1}{12} )+3(\frac{4}{20} )+4(\frac{1}{20} )+2(\frac{3}{20} )+\frac{2}{20}[/tex]
⇒ [tex]= \frac{169}{60}[/tex]
⇒ [tex]=2.82[/tex]