Which of the following functions has a graph with a vertex that is a translation 5 units horizontally to the right of the vertex of the graph of y = (x - 1)2+3?

Respuesta :

Answer:

[tex]g(x) = (x-6)^2 +3[/tex]

Step-by-step explanation:

Given

[tex]y = (x - 1)^2 + 3[/tex]

Required:

Shift 5 units to the right

f(x) = (x + 2)^2 + 2

 

The parabola is written as:

[tex]y = a(x-h) ^2 +k[/tex]

Where [tex](h,k)[/tex] is the vertex

Compare [tex]y = a(x-h) ^2 +k[/tex] to [tex]y = (x - 1)^2 + 3[/tex]

The vertex is:

[tex]Vertex =(1,3)[/tex]

 

Shift 5 units to the right

The rule is:

[tex](x,y) \to (x + 5,y)[/tex]

So, we have:

[tex](1,3) \to (1 + 5,3)[/tex]

[tex](1,3) \to (6,3)[/tex]

The new function is:

[tex]g(x) = a(x-h) ^2 +k[/tex]

[tex]g(x) = (x-6)^2 +3[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico