Answer:
[tex]g(x) = (x-6)^2 +3[/tex]
Step-by-step explanation:
Given
[tex]y = (x - 1)^2 + 3[/tex]
Required:
Shift 5 units to the right
f(x) = (x + 2)^2 + 2
The parabola is written as:
[tex]y = a(x-h) ^2 +k[/tex]
Where [tex](h,k)[/tex] is the vertex
Compare [tex]y = a(x-h) ^2 +k[/tex] to [tex]y = (x - 1)^2 + 3[/tex]
The vertex is:
[tex]Vertex =(1,3)[/tex]
Shift 5 units to the right
The rule is:
[tex](x,y) \to (x + 5,y)[/tex]
So, we have:
[tex](1,3) \to (1 + 5,3)[/tex]
[tex](1,3) \to (6,3)[/tex]
The new function is:
[tex]g(x) = a(x-h) ^2 +k[/tex]
[tex]g(x) = (x-6)^2 +3[/tex]