Respuesta :

Answer:

4 feet by 8 feet

Explanation:

Given

[tex]P =24[/tex] -- Perimeter

[tex]A = 32[/tex] --- Area

Required

The dimension of the tent

The perimeter of a rectangle is:

[tex]P =2(L + W)[/tex]

Where

[tex]L = Length\\ W = Width[/tex]

So, we have:

[tex]2(L+W) = 24[/tex]

Divide both sides by 2

[tex]L + W = 12[/tex]

Make L the subject

[tex]L = 12 - W[/tex]

The area is calculated as:

[tex]A = L* W[/tex]

This gives:

[tex]L * W = 32[/tex]

Substitute[tex]L = 12 - W[/tex]

[tex](12 - W) * W = 32\\[/tex]

Open bracket

[tex]12W - W^2 = 32[/tex]

Express as quadratic equation

[tex]W^2 - 12W - 32 = 0[/tex]

Expand

[tex]W^2 - 8W -4W- 32 = 0[/tex]

Factorize

[tex]W(W - 8) -4(W- 8) = 0[/tex]

Factor out W - 8

[tex](W - 4)(W- 8) = 0[/tex]

Split

[tex]W - 4 = 0\ or\ W - 8 = 0[/tex]

Solve for W

[tex]W =4\ or\ W = 8[/tex]

Recall that:

[tex]L = 12 - W[/tex]

Substitute [tex]W =4\ or\ W = 8[/tex]

[tex]L = 12 - 4 = 8[/tex]

[tex]L = 12 - 8 = 4[/tex]

So, we have:

[tex]W =4\ or\ W = 8[/tex]

[tex]L = 8\ or\ L = 4[/tex]

So, the dimension is: 4 feet by 8 feet

ACCESS MORE
EDU ACCESS
Universidad de Mexico