Respuesta :
[tex]V_{f2} =0.29 \dfrac{m}{s}[/tex] :Speed of the block immediately after the collision.
What is the elastic collision?
From elastic collision theory.
Momentum of a body is given as
[tex]P=m\times v[/tex]
where
p:Linear momentum
m: mass
v:velocity
There are 3 cases of collisions : elastic, inelastic and plastic.
For elastic collision the change in momentum remains constant
[tex]P_{i} =P_{f}[/tex]
Nomenclature and data
m₁: ball mass= 5.21 g= 5.21*10⁻³kg
V₀₁: initial ball speed, =412 m/s
[tex]V_{f1}[/tex]: final ball speed
m₂: block mass = 14.8 kg
V₀₂: initial block speed, = 0
[tex]V_{f2}[/tex]: final block speed
We apply furmula
[tex]P_{i} =P_{f}[/tex]
m₁[tex]\times[/tex]V₀₁+m₂[tex]\times[/tex]V₀₂=m₁[tex]\times[/tex]Vf₁+m₂[tex]\times[/tex]Vf₂
5.21[tex]\times[/tex]10⁻³[tex]\times[/tex]412+14.8[tex]\times[/tex]0= 5.21[tex]\times[/tex]10⁻³[tex]\times[/tex]Vf₁+14.8[tex]\times[/tex]Vf₂
2.15= 5.21*10⁻³[tex]\times[/tex]Vf₁+14.8[tex]\times[/tex]Vf₂ Equation (1)
For perfectly elastic collision the coefficient of elastic restitution (e) is equal to 1, and e is defined like this:
[tex]e=\dfrac{v_{f2-V_{f1} } }{v_{01-V_{ 02} } }[/tex]
1*(V₀₁-V₀₂) =Vf₂-Vf₁ , V₀₂=0, V₀₁ =412 m/s
412=Vf₂-Vf₁
Vf₁=Vf₂-412 Equation (2)
We replace Equation (2) in Equation (1)
2.15= 5.21[tex]\times[/tex]10⁻³(Vf₂-412)+14.8[tex]\times[/tex]Vf₂
2.15= 5.21[tex]\times[/tex]10⁻³*Vf₂-2.15+14.8*Vf₂
4.3=14.805Vf₂
[tex]Vf_{2} =\dfrac{4.3}{14.805} =0.29 \dfrac{m}{s}[/tex]: (+) ,with equal direction of the movement of the ball before the collision.
Hence [tex]V_{f2} =0.29 \dfrac{m}{s}[/tex] Speed of the block immediately after the collision.
To know more about collisions follow
https://brainly.com/question/7694106