Respuesta :

Answer:

[tex]D = 50[/tex]

Step-by-step explanation:

Given

[tex]I = 10^{-7}W/m^2[/tex] --- Intensity

Required

Determine the decibel level (D)

This is calculated as:

[tex]D = 10 * log(\frac{I}{I_n})[/tex]

Where:

[tex]I_n =[/tex] The threshold intensity

[tex]I_n =1 * 10^{-12}W/m^2[/tex]

So, we have:

[tex]D = 10 * log(\frac{I}{I_n})[/tex]

This gives:

[tex]D = 10 * log(\frac{10^{-7}W/m^2}{1 * 10^{-12}W/m^2})[/tex]

[tex]D = 10 * log(\frac{10^{-7}}{10^{-12}})[/tex]

Apply law of indices

[tex]D = 10 * log(10^{-7--12})[/tex]

[tex]D = 10 * log(10^{5})[/tex]

Apply law of logarithm

[tex]loga^b = b\ log(a)[/tex]

So, we have:

[tex]D = 10 * 5 * log(10)[/tex]

[tex]log(10) =1[/tex]

So:

[tex]D = 10 * 5 *1[/tex]

[tex]D = 50[/tex]

Hence, the decibel level is 50

ACCESS MORE
EDU ACCESS
Universidad de Mexico