Respuesta :

Answer:

[tex]P = [-3/5,2.33][/tex]

Step-by-step explanation:

Given

See attachment for line segment RQ

[tex]P = \frac{5}{6}[/tex] of RQ

Required

The coordinates of P

Using line segment ratio formula, we have:

[tex]P = [\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n}][/tex]

If P is at:

[tex]P = \frac{5}{6}[/tex]

Then:

[tex]m : n = \frac{5}{6} : 1 -\frac{5}{6}[/tex]

Solve

[tex]m : n = \frac{5}{6} : \frac{6-5}{6}[/tex]

[tex]m : n = \frac{5}{6} : \frac{1}{6}[/tex]

Multiply by 6

[tex]m : n = \frac{5}{6} *6: \frac{1}{6} * 6[/tex]

[tex]m : n = 5 : 1[/tex]

By comparison

[tex]m=5\ \& n = 1[/tex]

From the attached line segment

[tex]R(x_1,y_1) = (4,-1)[/tex]

[tex]Q(x_2,y_2) = (-5,3)[/tex]

So, we have:

[tex]P = [\frac{5*-5 + 1*4}{5+1},\frac{5*3 + 1*-1}{5+1}][/tex]

[tex]P = [\frac{-25 + 4}{6},\frac{15 -1}{6}][/tex]

[tex]P = [\frac{-21}{6},\frac{14}{6}][/tex]

[tex]P = [-3/5,2.33][/tex]

Ver imagen MrRoyal
ACCESS MORE
EDU ACCESS
Universidad de Mexico