Answer:
[tex]P = [-3/5,2.33][/tex]
Step-by-step explanation:
Given
See attachment for line segment RQ
[tex]P = \frac{5}{6}[/tex] of RQ
Required
The coordinates of P
Using line segment ratio formula, we have:
[tex]P = [\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n}][/tex]
If P is at:
[tex]P = \frac{5}{6}[/tex]
Then:
[tex]m : n = \frac{5}{6} : 1 -\frac{5}{6}[/tex]
Solve
[tex]m : n = \frac{5}{6} : \frac{6-5}{6}[/tex]
[tex]m : n = \frac{5}{6} : \frac{1}{6}[/tex]
Multiply by 6
[tex]m : n = \frac{5}{6} *6: \frac{1}{6} * 6[/tex]
[tex]m : n = 5 : 1[/tex]
By comparison
[tex]m=5\ \& n = 1[/tex]
From the attached line segment
[tex]R(x_1,y_1) = (4,-1)[/tex]
[tex]Q(x_2,y_2) = (-5,3)[/tex]
So, we have:
[tex]P = [\frac{5*-5 + 1*4}{5+1},\frac{5*3 + 1*-1}{5+1}][/tex]
[tex]P = [\frac{-25 + 4}{6},\frac{15 -1}{6}][/tex]
[tex]P = [\frac{-21}{6},\frac{14}{6}][/tex]
[tex]P = [-3/5,2.33][/tex]