Given:
[tex]\cos A=\dfrac{4}{\sqrt{65}}[/tex]
[tex]\sin B=\dfrac{1}{\sqrt{2}}[/tex]
A and B both lies in I quadrant.
To find:
The value of [tex]\sin (A+B)[/tex].
Solution:
We know that, all trigonometric ratios are positive in first quadrant.
[tex]sin^2\theta +\cos^2\theta =1[/tex]
Using this we get
[tex]\sin^2A +\cos^2A =1[/tex]
[tex]\sin^2A +\left(\dfrac{4}{\sqrt{65}}\right)^2 =1[/tex]
[tex]\sin^2A +\dfrac{16}{65}=1[/tex]
[tex]\sin^2A =1-\dfrac{16}{65}[/tex]
Taking square root on both sides, we get
[tex]\sin A =\sqrt{\dfrac{65-16}{65}}[/tex] [Only positive because A lies in I quadrant]
[tex]\sin A =\sqrt{\dfrac{49}{65}}[/tex]
[tex]\sin A =\dfrac{7}{\sqrt{65}}[/tex]
Similarly,
[tex]\sin^2B +\cos^2B =1[/tex]
[tex]\left(\dfrac{1}{\sqrt{2}}\right)^2 +\cos^2B =1[/tex]
[tex]\dfrac{1}{2}+\cos^2B =1[/tex]
[tex]\cos^2B =1-\dfrac{1}{2}[/tex]
Taking square root on both sides, we get
[tex]\cos B =\sqrt{\dfrac{2-1}{2}}[/tex] [Only positive because B lies in I quadrant]
[tex]\cos B =\sqrt{\dfrac{1}{2}}[/tex]
[tex]\cos B =\dfrac{1}{\sqrt{2}}[/tex]
Now,
[tex]\sin (A+B)=\sin A\cos B+\cos A\sin B[/tex]
[tex]\sin (A+B)=\dfrac{7}{\sqrt{65}}\times \dfrac{1}{\sqrt{2}}+\dfrac{4}{\sqrt{65}}\times \dfrac{1}{\sqrt{2}}[/tex]
[tex]\sin (A+B)=\dfrac{7}{\sqrt{130}}+\dfrac{4}{\sqrt{130}}[/tex]
[tex]\sin (A+B)=\dfrac{11}{\sqrt{130}}[/tex]
Therefore, the exact value of [tex]\sin (A+B)[/tex] is [tex]\dfrac{11}{\sqrt{130}}[/tex].