Respuesta :
ΔH(reaction) = ΔH(formation of products) - ΔH(formation of reactants)
ΔH(reaction) = ( 1*ΔH(Pb(s)) + 1*ΔH(CO2(g)) ) - ( 1*ΔH(PbO(s)) + 1*ΔH(CO(g)) )
ΔH(reaction) = ( 0 + -393.5 ) - ( ΔH(PbO(s)) + -110.5 )
ΔH(reaction) = -283 - ΔH(PbO(s))
-131.4 = -283 -ΔH(PbO(s))
ΔH(PbO(s)) = -151.6 kJ
So, the best answer is A.
ΔH(reaction) = ( 1*ΔH(Pb(s)) + 1*ΔH(CO2(g)) ) - ( 1*ΔH(PbO(s)) + 1*ΔH(CO(g)) )
ΔH(reaction) = ( 0 + -393.5 ) - ( ΔH(PbO(s)) + -110.5 )
ΔH(reaction) = -283 - ΔH(PbO(s))
-131.4 = -283 -ΔH(PbO(s))
ΔH(PbO(s)) = -151.6 kJ
So, the best answer is A.
Answer: The correct answer is Option A.
Explanation:
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as [tex]\Delta H^o[/tex]
The equation used to calculate enthalpy change is of a reaction is:
[tex]\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)][/tex]
For the given chemical reaction:
[tex]PbO(s)+CO(g)\rightarrow Pb(s)+CO_2(g);\Delta H^o=-131.4kJ[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(Pb(s))})+(1\times \Delta H^o_f_{(CO_2(g))})]-[(1\times \Delta H^o_f_{(PbO(s))})+(1\times \Delta H^o_f_{(CO(g))})][/tex]
We are given:
[tex]\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_f_{(CO(g))}=-110.5kJ/mol\\\Delta H^o_f_{(Pb(s))}=0kJ/mol\\\Delta H^o_{rxn}=-131.4kJ[/tex]
Putting values in above equation, we get:
[tex]-131.4=[(1\times \Delta H^o_f_{(0)})+(1\times (-393.5))]-[(1\times \Delta H^o_f_{(PbO(s))})+(1\times (-110.5))]\\\\\Delta H^o_f_{(PbO(s))}=-151.6kJ/mol[/tex]
Hence, the correct answer is Option A.