Answer:
The measure of the side [tex]QR[/tex] is 8.8.
Step-by-step explanation:
Since [tex]LMNO \sim PQRS[/tex], then [tex]SP \propto OL[/tex], [tex]RS \propto ON[/tex], [tex]RQ \propto MN[/tex] and [tex]QP \propto LM[/tex]. From figure we have the following relationship:
[tex]k = \frac{OL}{SP} = \frac{ON}{RS} = \frac{MN}{QR} = \frac{ML}{QP}[/tex] (1)
Where [tex]k[/tex] is the proportionality ratio.
If we know that [tex]SP = 13, OL = 55, MN = 37[/tex], then the measure of side [tex]QR[/tex] is:
[tex]k = \frac{OL}{SP}[/tex] (1b)
[tex]k = \frac{55}{13}[/tex]
[tex]k = \frac{MN}{QR}[/tex]
[tex]QR = \frac{MN}{k}[/tex] (1c)
[tex]QR = \frac{37}{\frac{55}{13} }[/tex]
[tex]QR = 8.745[/tex]
The measure of the side [tex]QR[/tex] is 8.8.