Seatwork 5, solve for the values of v, w, x, y and z

Answer:
The set of values are described below:
[tex]v = 25\,cm[/tex], [tex]w = 25^{\circ}[/tex], [tex]x = 25^{\circ}[/tex], [tex]y = 65^{\circ}[/tex] and [tex]z = 10\,cm[/tex].
Step-by-step explanation:
Since [tex]\triangle JPO \cong \triangle SMR[/tex], then [tex]OJ \parallel RS[/tex] and [tex]OP \parallel RM[/tex]. By Alternate Internal Angles, we find that [tex]\angle R \cong \angle O[/tex]. In addition, the sum of internal angles in triangles equals 180°. Then, we have the following system of linear equations:
[tex]m\angle R + m\angle M + m\angle S = 180^{\circ}[/tex] (1)
[tex]m \angle O + m \angle P + m\angle J = 180^{\circ}[/tex] (2)
[tex]m\angle S = 65^{\circ}[/tex] (3)
[tex]m \angle M = m\angle P = 90^{\circ}[/tex] (4)
The solution of this system is [tex]m\angle R = 25^{\circ}[/tex], [tex]m \angle O = 25^{\circ}[/tex] and [tex]m \angle J = 65^{\circ}[/tex].
Lastly, the remaining sides are found by definition of congruence
Segment RS
Since [tex]\triangle JPO \cong \triangle SMR[/tex], then [tex]\overline {RS} \cong \overline {OJ}[/tex]. Hence, [tex]RS = 25\,cm[/tex]
Segment JP
Since [tex]\triangle JPO \cong \triangle SMR[/tex], then [tex]\overline{SM} \cong \overline {JP}[/tex]. Hence, [tex]JP = 10\,cm[/tex]
The set of values are described below:
[tex]v = 25\,cm[/tex], [tex]w = 25^{\circ}[/tex], [tex]x = 25^{\circ}[/tex], [tex]y = 65^{\circ}[/tex] and [tex]z = 10\,cm[/tex].