moon84
contestada

The midpoint of a segment is 19,5) and one of the endpoints is (13,81 What are the coordinates of the otherendpoint

Respuesta :

Answer:

[tex](25,-71)[/tex]

Step-by-step explanation:

Given

[tex](x,y) = (19,5)[/tex] --- midpoint

[tex](x_1,y_1) = (13,81)[/tex] --- end 1

Required

The other endpoint

Using midpoint formula, we have:

[tex](x,y) = 0.5 * [x_1 + x_2, y_1 + y_2][/tex]

So, we have:

[tex](19,5) = 0.5 * [13 + x_2, 81 + y_2][/tex]

Multiply both sides by 2

[tex]2 * (19,5) = 2 * 0.5 * [13 + x_2, 81 + y_2][/tex]

[tex](38,10) = [13 + x_2, 81 + y_2][/tex]

By comparison:

[tex]x_2 + 13 = 38[/tex] and [tex]y_2 + 81 = 10[/tex]

So:

[tex]x_2 = 38 - 13[/tex]

[tex]x_2 = 25[/tex]

and

[tex]y_2 = 10 - 81[/tex]

[tex]y_2 = - 71[/tex]

Henc, the other endpoint is:

[tex](25,-71)[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico