Respuesta :

Answer:

[tex]g(x)=-2\sqrt[3]x[/tex]

or

[tex]g(x) = -2f(x)[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \sqrt[3]x[/tex]

Required

Write a rule for g(x)

See attachment for grid

From the attachment, we have:

[tex](x_1,y_1) = (-1,2)[/tex]

[tex](x_2,y_2) = (1,-2)[/tex]

We can represent g(x) as:

[tex]g(x) = n * f(x)[/tex]

So, we have:

[tex]g(x) = n * \sqrt[3]x[/tex]

For:

[tex](x_1,y_1) = (-1,2)[/tex]

[tex]2 = n * \sqrt[3]{-1}[/tex]

This gives:

[tex]2 = n * -1[/tex]

Solve for n

[tex]n = \frac{2}{-1}[/tex]

[tex]n = -2[/tex]

To confirm this value of n, we make use of:

[tex](x_2,y_2) = (1,-2)[/tex]

So, we have:

[tex]-2 = n * \sqrt[3]1[/tex]

This gives:

[tex]-2 = n * 1[/tex]

Solve for n

[tex]n = \frac{-2}{1}[/tex]

[tex]n = -2[/tex]

Hence:

[tex]g(x) = n * \sqrt[3]x[/tex]

[tex]g(x)=-2\sqrt[3]x[/tex]

or:

[tex]g(x) = -2f(x)[/tex]

Ver imagen MrRoyal
RELAXING NOICE
Relax