Answer:
[tex]12\; \rm N[/tex].
[tex]3\; \rm m\cdot s^{-2}[/tex].
Explanation:
By Newton's Second Law, the acceleration of an object is proportional to the size of the resultant force on it, and inversely proportional to the mass of this object.
[tex]\displaystyle \text{acceleration} = \frac{\text{resultant force}}{\text{mass}}[/tex].
Rearrange this equation for the resultant force on the object:
[tex]\text{resultant force} = \text{acceleration} \cdot \text{mass}[/tex].
For the [tex]6\; \rm kg[/tex] object in this question:
[tex]\begin{aligned} F &= m \cdot a \\ &= 6\; \rm kg \times 2\; \rm m \cdot s^{-2} \\ &=12\; \rm N\end{aligned}[/tex].
When the resultant force on the [tex]4\; \rm kg[/tex] object is also [tex]12\; \rm N[/tex], the acceleration of that object would be:
[tex]\begin{aligned} a &= \frac{F}{m} \\ &= \frac{12\; \rm N}{4\; \rm kg} = 3\; \rm m \cdot s^{-2}\end{aligned}[/tex].